The Science Behind BlueGreenTest

Future Toxin Testing

Although not as widespread, other toxins including alkaloids and endotoxins are still prevalent globally and require special attention as they induce varied physiological and ecological responses. For example, in a study of tropical Australia the species Cylindrospermopsis raciborskii accounted for 87.5% of total blooms ⁽⁴⁸⁾, whose various strains can produce the alkaloid toxins; cylindrospermopsis, anatoxin-a, and saxitoxin ⁽⁴⁹⁾.

The main toxin-producing genera and primary organs impacted are outlined in the table below, and will be targeted in the development of future cyanotoxin testing.

Molecular Testing for Cyanotoxins

Traditionally, cyanobacteria monitoring has been based on microscopic counting and identification of single organisms. However, complex bioanalytical molecular testing is necessary in order to detect and quantify potentially toxic cyanobacterial species or strains, as cyanotoxin and non-cyanotoxin producing strains of the same species cannot be discriminated under the microscope.

The largest challenge facing analysing cyanotoxin levels is the highly variable nature of toxicity, in conjunction with the undefined number of chemical species displayed in each group of toxins. In particular,the majority of current testing techniques require a significant amount of time to process before results can be analysed. However, this is problematic due to the highly time-dependent nature of cyanotoxic hazards, particularly in remote sampling areas involving drinking water units ⁽⁵⁰⁾.

There are numerous analytical methods used in the detection of MCs/Nod, including:

Each method provides different and often complementary information which can be used in conjunction with another to provide a detailed insight into the toxicological profile of the sample. The type of method employed will largely be determined by the type of data required, including the time frame and sensitivity ⁽⁹⁾

Mass spectrometry identifies chemicals present within a sample by ionizing substances and then sorting the ions based on a ratio of their mass and ionic charge. In particular, high-resolution mass-spectrometry provides a fairly reliable technique to identify cyanotoxins, as long at the toxin level is significantly high enough. However, quantitation in this method is difficult due to the lack of isotopically labelled standards for dilutions techniques ⁽⁵¹⁾

Enzyme-based protein phosphatase inhibition assays targets the protein-inhibiting properties of cyanotoxins and records the rate of these select compounds over time within a sample. PPIAs are a robust tool, and are especially useful in diagnostic testing as they have the potential to detect the presence of toxins which may escape detection in other tests ⁽⁵²⁾

High performance liquid chromatography (HPLC) uses a separation process to isolate individual components of a mixture and determine the quantities of each present. This method can be performed mass spectrometry to increase the sensitivity and accuracy of the final results ⁽⁵³⁾.

The BlueGreenTest ® utilises immunoassay techniques, explained on the next page.

Stockist List will be updated Shortly

[1] Stanier, R. Y, and Bazine, G, C., Phototrophic prokaryotes: the cyanobacteria. Annual Reviews in Microbiology, 1977.13(1): p. 225-274.

[2] Sergeev, V, N., et al., The proterozoic history and present state of cyanobacteria. Microbiology, 2002. 71(6): p. 623-37.

[3] Iasmina, M., Microcystis aeruginosa from Danube Delta shallow lakes, original OM picture, CyanoRO: Romanian Cyanobacteria, 2014.

[4] MacIntyre, H, L., et al., Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria 1. Journal of phycology, 2002. 38(1), p. 17-38.

[5] Malmvärn , A ., et al., Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere, 2008. 72(6): p. 910-916.

[6] Kock, M, D., et al., Mycobacterium avium-related epizootic in free-ranging lesser flamingos in Kenya. Journal of wildlife diseases, 1999. 35(2) p. 297-300.

[7] MDBA, Blue-green algae on the Murray River, Murray Darling Basin Authority, April 2009, https://www.mdba.gov.au/managing-water/water-quality/blue-green-algae, accessed 10/09/18

[8] Raedle, J., Toxic lake: the untold story of lake Okeechobee, The Weather Channel, December 2016, https://weather.com/news/news/florida-toxic-lake-okeechobee, accessed 11/09/18

[9] Corbel, S, et al., Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere, 2014. 96(1): p. 1-5.

[10] O’neil, J. M., et al. “The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change.” Harmful algae 14 (2012): 313-334

[11] Buratti, F., et al., Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 2017. 91: p. 1049 -1130

[12] McElhiney, J, and Lawton, L, A., Detection of the cyanobacterial hepatotoxins microcystins. Toxicology and applied pharmacology, 2005. 203(3): p. 219-30.

[13] Mello, F, D., et al., Mechanisms and effects posed by neurotoxic products of cyanobacteria/microbial eukaryotes/dinoflagellates in algae blooms: a review. Neurotoxicology Research, 2018. 33: p. 153 -167

[14] Kaebernick, M., et al., Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 2001. 35: p. 1-9

[15] Aloysio, S, F., et al., Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs, 2011. 9: p. 2729-2772

[16] Codd, G, A., et al. Toxic blooms of cyanobacteria in Lake Alexandrina, South Australia—learning from history. Marine and Freshwater Research, 1994. 45(5):p. 731-6

[17] Niamien-Ebrottie, J, E., et al., Cyanobacteria and cyanotoxins in the world: Review. International Journal of Applied Research, 2015. 1(8): p. 563 -569

[18] Rastogi, R, and Sinha, R, R., The cyanotoxin-microcystins: current overview. Review of Environmental Science and Biotechnology, 2014. 13: p. 215-249

[19] Hu, Y., et al., A review of neurotoxicity of microcystins. Environmental Science and Pollution Research, 2016. 23(8): p. 7211-7219.

[20] Chen, L., et al., A review of reproductive toxicity of microcystins. Journal of Hazardous Materials, 2016. 301: p. 381-399.

[21] Žegura, B., A. Štraser, and M. Filipič, Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. Mutation Research/Reviews in Mutation Research, 2011. 727(1): p. 16-41.

[22] Zegura, B., An Overview of the Mechanisms of Microcystin-LR Genotoxicity and Potential Carcinogenicity. Vol. 16. 2016. 1-1.

[1] Hu, Y., et al., A review of neurotoxicity of Microcystins. Environmental Science Pollution Research, 2016. 23(1): p. 7211-7219

[1] Falconer , I, R., et al., Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. The Medical Journal of Australia.,1983. 11(1): p. 511-4.

[23] Andrew R. Humpage, S.J.H.E.J.M.S.M.F.I.R.F., MICROCYSTINS (CYANOBACTERIAL TOXINS) IN DRINKING WATER ENHANCE THE GROWTH OF ABERRANT CRYPT FOCI IN THE MOUSE COLON. Journal of Toxicology and Environmental Health, Part A, 2000. 61(3): p. 155-165.

[24] Botha, N., et al., The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon, 2004. 43(3): p. 251-254.

[25] Nobre, A.C.L., et al., Effects of microcystin-LR in isolated perfused rat kidney. Brazilian Journal of Medical and Biological Research, 1999. 32: p. 985-988.

[26] Milutinović, A., et al., Renal injuries induced by chronic intoxication with microcystins. Vol. 7. 2002. 139-41.

[27] Ding, X.-S., et al., Toxic effects of Microcystis cell extracts on the reproductive system of male mice. Toxicon, 2006. 48(8): p. 973-979.

[28] Li, H., et al., In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon, 2009. 53(1): p. 169-175.

[29] Milutinović, A., et al., Microcystin-LR induces alterations in heart muscle. Vol. 52. 2006. 116-8.

[30] Slatkin, D.N., et al., Atypical Pulmonary Thrombosis Caused by a Toxic Cyanobacterial Peptide. Science, 1983. 220(4604): p. 1383-1385.

[31] Soares, R.M., et al., Effects of microcystin-LR on mouse lungs. Toxicon, 2007. 50(3): p. 330-338.

[32] Falconer, I.R. and T.H. Buckley, Tumour promotion by Microcystis sp., a blue-green alga occurring in water supplies. Med J Aust, 1989. 150(6): p. 351.

[33] Fujiki, H., et al., Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters. Mol Carcinog, 1989. 2(4): p. 184-7.

[34] Falconer, I.R., Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environmental Toxicology and Water Quality, 1991. 6(2): p. 177-184.

[35] Chen, Y., et al., Nodularins in poisoning. Clinica Chimica Acta, 2013. 425(1): p. 18-29

[36] Ufelmann, H., et al., Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology. 2012. 293(1): p. 59-67

[37] Towner, A., et al., In vivo assessment of nodularin-induced hepatotoxitity in the rat using magnetic resonance techniques (MRI, MRS and EPR oximetry). Chemico-Biological Interactions, 2002. 139(3): p. 231-250

[38] Mello,F, D., et al., Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms: a Review. Neurotoxicity Research, 2018. 33: p. 153-167

[39] Park, T, J., et al., Marked inhibition of testosterone biosynthesis by the hepatotoxin nodularin due to apoptosis of Leydig cells. Molecular Carcinogenesis, 2002. 34(3), p. 151-163

[40] Oziol, L., et al., First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. Journal of Hazardous Materials, 2010. 174(1), p. 610-615

[41] Lankoff, A., et al., Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicology Letters, 2006. 164(3), p. 239-248

[42] Lankoff, A., et al., Nucleotide excision repair impairment by nodularin in CHO cell lines due to ERCC1/XPF inactivation. Toxicology Letters, 2008. 179(2), p. 101-107

[43] Ohta, T.,et al., Significance of the cyanobacterial cyclic peptide toxins, the Microcystins and nodularin in liver cancer. Mutation Research/Environmental Mutagenesis and Related Subjects, 1993. 292(3): p. 286-287

[44] Ohta, T., et al., Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver, 1994. 54(24): p. 6402-6406

[45] Protist Information Server, Cyanophyceae: Nostocales : Nostocaeceae: Nodularia spumigena, Digital Specimen Archives, Japan Science and Technology Corporation, 2018, http://protist.i.hosei.ac.jp/PDB/Images/Prokaryotes/Nostocaceae/sp_02b.html, accessed 11/09/18

[46] Mowe MAD, Mitrovic SM, Lim RP, Furey A, Yeo DCJ. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors, 2014. DOI:10.4081/jlimnol.2014.1005

[47] Wilson, Kim; Mark A. Schembri; Peter D. Baker; Christopher P. Saint (2000). “Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis Raciborskii and Design of a Species-Specific PCR”. Applied and Environmental Microbiology66 (1): 332–338

[48] Weller, M, G. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Sensors, 2013. 13: p. 15085 – 15112

[49] Moore, C, E., et al., Comparison of protein phosphatase inhibition assay with LC-MS/MS for diagnosis of microcystin toxicosis in veterinary cases. Marine Drugs, 2016. 14(54): p. 1 -16

[50] Gaget, V., et al., Cyanotoxins: which detection technique for an optimum risk assessment? Water Research, 2017. 118: p. 227 – 238

[51] Welker, M., et al., HPLC-PDA detection of cylindrospermopsin—opportunities and limits. Water Research. 2002. 18(1): p. 4659-4663

[52] Weller, M, G. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Sensors, 2013. 13: p. 15085 – 15112

[53] Metcalf, J,S, and Codd, G, A., Immunoassays and Other Antibody Applications. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 2016. 18:p. 263-266.

[54] Dodeign, C., et al., Chemiluminescence as diagnostic tool. A review. Talanta, 2000. 51(3): p. 415-39

[55] Hennion, M, C, and Barcelo, D. Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: A review. Analytica Chimica Acta, 1998. 362(1): p. 3-4

[56] Akter, S., et al., Broad-spectrum noncompetitive immunocomplex immunoassay for cyanobacterial peptide hepatotoxins (Microcystins and Nodularins). Analytical Chemistry, 2016. 88: p. 10080 -10087

[57] Metcalf, J, S, and Codd, G, A., Cyanobacterial Toxins (Cyanotoxins) in Water: A review of current knowledge. Foundation for Water Research, 2004.

[58]Neumann, A, C., et al., Determination of microcystin-LR in surface water by a magnetic bead-based colorimetric immunoassay using antibody-conjugated gold nanoparticles. Analytical Methods, 2015. 8: p. 57-62

59 Bownik, A., Harmful algae: Effects of cyanobacterial cyclic peptides on aquatic invertebrates- a short review. Toxicon, 2016. 124: p. 25 -51