The Science Behind BlueGreenTest

The Basics of Immunoassay’s

An Immunoassay is a technique utilized to detect the presence or quantity of a substance, such as hormones, drugs or specific proteins. Due to recent developments, immunoassays are an increasingly popular tool as they offer fast, sensitive and specific results compared to traditional techniques ⁽⁴⁸⁾.

The term Immunoassay refers to any test that, as its core, depends on the binding of an antigen and antibody together. Similar to the locking of two puzzle pieces together, only one specific antibody will bind with an antigen. In general terms, the basis of the test lies through determining whether the substance being tested reacts with the known antibody. Since only one antigen will bind with that specific antibody, it can be verified that the antigen being tested for is present ⁽⁵⁴⁾.

Antigen: Any substance with which a specific antibody will bind to in accordance with the antigen’s molecular structure.
In immunology, an antigen (often a foreign or harmful substance) is a molecule capable of inducing the immune response of the creation of antibodies specific to itself.
Antigens include proteins, peptide (amino acid chains), and polysaccharides (and lipids/nucleic acids only when combined with a protein).

Antibody: A specialised protein (immunoglobulin) which recognises and binds specifically with only one antigen.
In immunology, an antibody will flag the antigen as problematic, or can even neutralize it directly in some cases ⁽⁴²⁾.

In order to indicate whether the antigen has bonded with the antibody, the tests uses reagents to generate a signal from minute amounts of target substances (analyte) in a sample [²⁰].  To simply explain immunoassays, one cannot defer from the simple imagery conjured by David Wild’s brilliant analogy of the magnet on a fishing line [²⁰].

Imagine tying a magnet to a piece of fishing line – this magnet is then placed in a streamWhilst the magnet is sitting in the stream, several miniscule pieces of metal are attracted to the magnet, where they sit, securely affixedIf we relate this to an immunoassay, the magnet is replaced by an antibody, which instead of being fixed to a piece of fishing line, is immobilized on to a plastic surface’.

Due its specificity, only the targeted antigens will bind to the antibodies, even when exposed to a sample containing an infinite number of other particles. In the case of the BlueGreenTest ®, the toxins are in such minute concentrations, that it is not good enough to simply “catch” the toxins, we must have the ability to quantify the amount present in the sample.  To do this, the immunoassay process employs the use of a second reagent to generate a signal from the target analyte in the sample. This signal generated enables us to determine the concentration of the target analyte present in the sample ⁽⁵⁵⁾.

Signals are often determined via ‘labelling’ the secondary antibody with a biochemical marker which can be directly measured. There are a variety of mechanisms utilized to label, including covalently attaching either a radioisotope (Radioimmunoassay – RIA), reporter enzyme (Enzyme Linked ImmunoSorbent Assay- ELISA), or a fluorescent compound to the antibody (Immunofluorescent assays – IFA) ⁽⁴⁸⁾

In the case of the BlueGreenTest ®, the signal is displayed as a the vibrancy of the Test ⁽ᵀ⁾ line whereby the concentration of target analyte present is proportional to the strength of the line.

Immunoassay methods

There are two main methods used in Immunoassays: competitive and non-competitive.

Competitive immunoassays:
In competitive immunoassays, the targeted analyte of interest (antigen) competes with a constant added amount of labelled similar antigen for a limited amount of specific antibody binding sites. The amount of labelled antigens bound with the restricted antibodies is inversely proportional to the amount of analyte of interest present in the specimen, meaning that as the amount of the analyte in the sample increases, the detectable signal decreases ⁽⁵⁶⁾.

Competitive immunoassays can be classified further as:
Simultaneous addition:  Where all components are added at once.

Sequential: where the sample is incubated with the antibody before the labelled analogue is added. This assists to improve the sensitivity of the test.

Due to the restricted nature, the assays are highly sensitive and are able to produce a large signal from a small amount of analyte. The sensitivity of each assay is related any inversely proportional to the affinity constant of the antibody used. Additionally, complete purification of the antibody is not essential, and the process is not significantly affected by substances that cross-react with the antibody ⁽⁴⁸⁾

However, competitive immunoassays are comparatively slow and require longer incubation times in order to process (reach equilibrium). Additionally, sensitivity of the test will be impacted by compounds within the sample that affect the equilibrium constant of the reaction ⁽⁴⁷⁾ ⁽⁵²⁾

Non-competitive immunoassays:
Non-competitive, or immunometric immunoassays utilize an excess of labelled antibody toward the analyte of interest (the antigen). “Sandwich” immunoassays incorporate two separate antibodies, one labelled, and one un-labelled and fixed to a solid support which is used to extract the analyte of interest from the sample.  The second labelled antibody is added and binds to a separate site on the bided analytes- resulting in an antibody “sandwich” with the analyte positioned in the middle of the two antibodies. The amount of analyte is able to be determined through measuring detectable signal from the labelled antibody, whereby the amount of bound labelled antibody is directly proportional to the amount of analyte present in the specimen ⁽⁵⁷⁾.

Non-competitive immunoassays are highly specific and sensitive, being able to theoretically detect just one molecule of a specified antigen. Due to the excess amount of antibody present, non-competitive immunoassays are significantly faster and less prone to influence by substances or conditions affecting the reaction equilibrium compared to competitive immunoassays ⁽⁴⁸⁾

However, non-competitive immunoassays require large amounts of purse, specific antibodies to accurately identify analytes of interest. In addition, sandwich-type immunoassays are limited to the measurement of larger analytes, as they require at least two distinct antibody binding sites ⁽⁵²⁾

Stockist List will be updated Shortly

[1] Stanier, R. Y, and Bazine, G, C., Phototrophic prokaryotes: the cyanobacteria. Annual Reviews in Microbiology, 1977.13(1): p. 225-274.

[2] Sergeev, V, N., et al., The proterozoic history and present state of cyanobacteria. Microbiology, 2002. 71(6): p. 623-37.

[3] Iasmina, M., Microcystis aeruginosa from Danube Delta shallow lakes, original OM picture, CyanoRO: Romanian Cyanobacteria, 2014.

[4] MacIntyre, H, L., et al., Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria 1. Journal of phycology, 2002. 38(1), p. 17-38.

[5] Malmvärn , A ., et al., Hydroxylated and methoxylated polybrominated diphenyl ethers and polybrominated dibenzo-p-dioxins in red alga and cyanobacteria living in the Baltic Sea. Chemosphere, 2008. 72(6): p. 910-916.

[6] Kock, M, D., et al., Mycobacterium avium-related epizootic in free-ranging lesser flamingos in Kenya. Journal of wildlife diseases, 1999. 35(2) p. 297-300.

[7] MDBA, Blue-green algae on the Murray River, Murray Darling Basin Authority, April 2009, https://www.mdba.gov.au/managing-water/water-quality/blue-green-algae, accessed 10/09/18

[8] Raedle, J., Toxic lake: the untold story of lake Okeechobee, The Weather Channel, December 2016, https://weather.com/news/news/florida-toxic-lake-okeechobee, accessed 11/09/18

[9] Corbel, S, et al., Cyanobacterial toxins: modes of actions, fate in aquatic and soil ecosystems, phytotoxicity and bioaccumulation in agricultural crops. Chemosphere, 2014. 96(1): p. 1-5.

[10] O’neil, J. M., et al. “The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change.” Harmful algae 14 (2012): 313-334

[11] Buratti, F., et al., Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Archives of Toxicology, 2017. 91: p. 1049 -1130

[12] McElhiney, J, and Lawton, L, A., Detection of the cyanobacterial hepatotoxins microcystins. Toxicology and applied pharmacology, 2005. 203(3): p. 219-30.

[13] Mello, F, D., et al., Mechanisms and effects posed by neurotoxic products of cyanobacteria/microbial eukaryotes/dinoflagellates in algae blooms: a review. Neurotoxicology Research, 2018. 33: p. 153 -167

[14] Kaebernick, M., et al., Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 2001. 35: p. 1-9

[15] Aloysio, S, F., et al., Cyanotoxins: bioaccumulation and effects on aquatic animals. Marine Drugs, 2011. 9: p. 2729-2772

[16] Codd, G, A., et al. Toxic blooms of cyanobacteria in Lake Alexandrina, South Australia—learning from history. Marine and Freshwater Research, 1994. 45(5):p. 731-6

[17] Niamien-Ebrottie, J, E., et al., Cyanobacteria and cyanotoxins in the world: Review. International Journal of Applied Research, 2015. 1(8): p. 563 -569

[18] Rastogi, R, and Sinha, R, R., The cyanotoxin-microcystins: current overview. Review of Environmental Science and Biotechnology, 2014. 13: p. 215-249

[19] Hu, Y., et al., A review of neurotoxicity of microcystins. Environmental Science and Pollution Research, 2016. 23(8): p. 7211-7219.

[20] Chen, L., et al., A review of reproductive toxicity of microcystins. Journal of Hazardous Materials, 2016. 301: p. 381-399.

[21] Žegura, B., A. Štraser, and M. Filipič, Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. Mutation Research/Reviews in Mutation Research, 2011. 727(1): p. 16-41.

[22] Zegura, B., An Overview of the Mechanisms of Microcystin-LR Genotoxicity and Potential Carcinogenicity. Vol. 16. 2016. 1-1.

[1] Hu, Y., et al., A review of neurotoxicity of Microcystins. Environmental Science Pollution Research, 2016. 23(1): p. 7211-7219

[1] Falconer , I, R., et al., Evidence of liver damage by toxin from a bloom of the blue-green alga, Microcystis aeruginosa. The Medical Journal of Australia.,1983. 11(1): p. 511-4.

[23] Andrew R. Humpage, S.J.H.E.J.M.S.M.F.I.R.F., MICROCYSTINS (CYANOBACTERIAL TOXINS) IN DRINKING WATER ENHANCE THE GROWTH OF ABERRANT CRYPT FOCI IN THE MOUSE COLON. Journal of Toxicology and Environmental Health, Part A, 2000. 61(3): p. 155-165.

[24] Botha, N., et al., The effect of intraperitoneally administered microcystin-LR on the gastrointestinal tract of Balb/c mice. Toxicon, 2004. 43(3): p. 251-254.

[25] Nobre, A.C.L., et al., Effects of microcystin-LR in isolated perfused rat kidney. Brazilian Journal of Medical and Biological Research, 1999. 32: p. 985-988.

[26] Milutinović, A., et al., Renal injuries induced by chronic intoxication with microcystins. Vol. 7. 2002. 139-41.

[27] Ding, X.-S., et al., Toxic effects of Microcystis cell extracts on the reproductive system of male mice. Toxicon, 2006. 48(8): p. 973-979.

[28] Li, H., et al., In vivo study on the effects of microcystin extracts on the expression profiles of proto-oncogenes (c-fos, c-jun and c-myc) in liver, kidney and testis of male Wistar rats injected i.v. with toxins. Toxicon, 2009. 53(1): p. 169-175.

[29] Milutinović, A., et al., Microcystin-LR induces alterations in heart muscle. Vol. 52. 2006. 116-8.

[30] Slatkin, D.N., et al., Atypical Pulmonary Thrombosis Caused by a Toxic Cyanobacterial Peptide. Science, 1983. 220(4604): p. 1383-1385.

[31] Soares, R.M., et al., Effects of microcystin-LR on mouse lungs. Toxicon, 2007. 50(3): p. 330-338.

[32] Falconer, I.R. and T.H. Buckley, Tumour promotion by Microcystis sp., a blue-green alga occurring in water supplies. Med J Aust, 1989. 150(6): p. 351.

[33] Fujiki, H., et al., Codon 61 mutations in the c-Harvey-ras gene in mouse skin tumors induced by 7,12-dimethylbenz[a]anthracene plus okadaic acid class tumor promoters. Mol Carcinog, 1989. 2(4): p. 184-7.

[34] Falconer, I.R., Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environmental Toxicology and Water Quality, 1991. 6(2): p. 177-184.

[35] Chen, Y., et al., Nodularins in poisoning. Clinica Chimica Acta, 2013. 425(1): p. 18-29

[36] Ufelmann, H., et al., Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology. 2012. 293(1): p. 59-67

[37] Towner, A., et al., In vivo assessment of nodularin-induced hepatotoxitity in the rat using magnetic resonance techniques (MRI, MRS and EPR oximetry). Chemico-Biological Interactions, 2002. 139(3): p. 231-250

[38] Mello,F, D., et al., Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms: a Review. Neurotoxicity Research, 2018. 33: p. 153-167

[39] Park, T, J., et al., Marked inhibition of testosterone biosynthesis by the hepatotoxin nodularin due to apoptosis of Leydig cells. Molecular Carcinogenesis, 2002. 34(3), p. 151-163

[40] Oziol, L., et al., First evidence of estrogenic potential of the cyanobacterial heptotoxins the nodularin-R and the microcystin-LR in cultured mammalian cells. Journal of Hazardous Materials, 2010. 174(1), p. 610-615

[41] Lankoff, A., et al., Nodularin-induced genotoxicity following oxidative DNA damage and aneuploidy in HepG2 cells. Toxicology Letters, 2006. 164(3), p. 239-248

[42] Lankoff, A., et al., Nucleotide excision repair impairment by nodularin in CHO cell lines due to ERCC1/XPF inactivation. Toxicology Letters, 2008. 179(2), p. 101-107

[43] Ohta, T.,et al., Significance of the cyanobacterial cyclic peptide toxins, the Microcystins and nodularin in liver cancer. Mutation Research/Environmental Mutagenesis and Related Subjects, 1993. 292(3): p. 286-287

[44] Ohta, T., et al., Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver, 1994. 54(24): p. 6402-6406

[45] Protist Information Server, Cyanophyceae: Nostocales : Nostocaeceae: Nodularia spumigena, Digital Specimen Archives, Japan Science and Technology Corporation, 2018, http://protist.i.hosei.ac.jp/PDB/Images/Prokaryotes/Nostocaceae/sp_02b.html, accessed 11/09/18

[46] Mowe MAD, Mitrovic SM, Lim RP, Furey A, Yeo DCJ. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors, 2014. DOI:10.4081/jlimnol.2014.1005

[47] Wilson, Kim; Mark A. Schembri; Peter D. Baker; Christopher P. Saint (2000). “Molecular Characterization of the Toxic Cyanobacterium Cylindrospermopsis Raciborskii and Design of a Species-Specific PCR”. Applied and Environmental Microbiology66 (1): 332–338

[48] Weller, M, G. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Sensors, 2013. 13: p. 15085 – 15112

[49] Moore, C, E., et al., Comparison of protein phosphatase inhibition assay with LC-MS/MS for diagnosis of microcystin toxicosis in veterinary cases. Marine Drugs, 2016. 14(54): p. 1 -16

[50] Gaget, V., et al., Cyanotoxins: which detection technique for an optimum risk assessment? Water Research, 2017. 118: p. 227 – 238

[51] Welker, M., et al., HPLC-PDA detection of cylindrospermopsin—opportunities and limits. Water Research. 2002. 18(1): p. 4659-4663

[52] Weller, M, G. Immunoassays and biosensors for the detection of cyanobacterial toxins in water. Sensors, 2013. 13: p. 15085 – 15112

[53] Metcalf, J,S, and Codd, G, A., Immunoassays and Other Antibody Applications. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis, 2016. 18:p. 263-266.

[54] Dodeign, C., et al., Chemiluminescence as diagnostic tool. A review. Talanta, 2000. 51(3): p. 415-39

[55] Hennion, M, C, and Barcelo, D. Strengths and limitations of immunoassays for effective and efficient use for pesticide analysis in water samples: A review. Analytica Chimica Acta, 1998. 362(1): p. 3-4

[56] Akter, S., et al., Broad-spectrum noncompetitive immunocomplex immunoassay for cyanobacterial peptide hepatotoxins (Microcystins and Nodularins). Analytical Chemistry, 2016. 88: p. 10080 -10087

[57] Metcalf, J, S, and Codd, G, A., Cyanobacterial Toxins (Cyanotoxins) in Water: A review of current knowledge. Foundation for Water Research, 2004.

[58]Neumann, A, C., et al., Determination of microcystin-LR in surface water by a magnetic bead-based colorimetric immunoassay using antibody-conjugated gold nanoparticles. Analytical Methods, 2015. 8: p. 57-62

59 Bownik, A., Harmful algae: Effects of cyanobacterial cyclic peptides on aquatic invertebrates- a short review. Toxicon, 2016. 124: p. 25 -51